Gemfibrozil Pharmacology

On this episode, I discuss gemfibrozil pharmacology, adverse effects, and important drug interactions.

Be sure to check out our free Top 200 study guide – a 31 page PDF that is yours for FREE!

Support The Podcast and Check Out These Amazing Resources!

Flippin’ Pharmacology Flash Cards

Pharmacology Crossword Puzzle Book (Over 2,000 Clues/Questions!)

NAPLEX Study Materials

BCPS Study Materials

BCACP Study Materials

BCGP Study Materials

BCMTMS Study Materials

Meded101 Guide to Nursing Pharmacology (Amazon Highly Rated)

Guide to Drug Food Interactions (Amazon Best Seller)

Drug Interactions In Primary Care (Amazing Resource for Practicing Clinicians)

Perils of Polypharmacy (Great Resource for Those Who Work in Geriatrics)

Trospium Pharmacology

On this episode, I discuss trospium pharmacology, adverse effects, and important drug interactions you should know.

Trospium chloride (Sanctura) is a bladder antimuscarinic or anticholinergic. It blocks the action of acetylcholine in bladder smooth muscle. It is used for urinary frequency and overactive bladder. The immediate-release formulation is taken twice a day. There is an extended-release version that is more expensive.

As its classification suggests it is going to have anticholinergic effects that include dry eyes, dry mouth, constipation, urinary retention, GI tract slowing down, CNS sedation, and increased risk of falls. Compared to older bladder anticholinergics such as oxybutynin or tolterodine there is less CNS penetration. Hopefully, this will cause the patient to experience fewer CNS side effects. A downside to this being a newer medication is that it costs more.

Trospium is on the BEERS list. Look for medications started after the trospium that indicate anticholinergic side effects such as saliva substitutes, an increase in BPH medications, artificial tears, or constipation medications.

It should be administered on an empty stomach as food can block absorption. If the patient is currently taking it with food and seeing results there is no need to change how they are taking it.

Trospium is not metabolized by CYP enzymes minimizing drug interactions. Most interactions occur because of additive effects. Avoid using it with other medications on the BEERS list, especially other anticholinergic medications. Be cautious using other medications with sedative effects and CNS depression (benzodiazepines, sleep medications, opioids, alcohol) as they may have additive effects.

Be sure to check out our free Top 200 study guide – a 31 page PDF that is yours for FREE!

Support The Podcast and Check Out These Amazing Resources!

Flippin’ Pharmacology Flash Cards

Pharmacology Crossword Puzzle Book (Over 2,000 Clues/Questions!)

NAPLEX Study Materials

BCPS Study Materials

BCACP Study Materials

BCGP Study Materials

BCMTMS Study Materials

Meded101 Guide to Nursing Pharmacology (Amazon Highly Rated)

Guide to Drug Food Interactions (Amazon Best Seller)

Drug Interactions In Primary Care (Amazing Resource for Practicing Clinicians)

Perils of Polypharmacy (Great Resource for Those Who Work in Geriatrics)

Propranolol Pharmacology

On this episode, I discuss propranolol pharmacology, adverse reactions, and important drug interactions you should know.

Propranolol (Inderal) is a non-selective beta-blocker. There are many indications for it including hypertension, tachycardia, atrial fibrillation, post-MI, chronic stable angina, essential tremors, migraine prophylaxis, esophageal varices, performance anxiety disorder, lithium-induced tremor, psychotic induced akathisia, and thyroid storm.

Propranolol blocks beta-1 receptors that are commonly referred to as the cardiac receptors and beta-2 receptors that are in the lungs. Albuterol is a beta-2 agonist meaning that propranolol can block its effects. This may lead to bronchospasms and worsening of respiratory conditions. This is one of the major issues when using a non-selective beta-blocker vs a selective one.

Other adverse effects include a drop in blood pressure and pulse. Fatigue is also seen in many geriatric patients so it is important to be titrating them up slowly. If you notice patients increasing caffeine intake, starting a stimulant, or experiencing new depression symptoms that can be a sign of fatigue. Sexual dysfunction has also been seen in patients taking propranolol. Propranolol may mask symptoms of hypoglycemia. Closely monitor patients that are taking insulin and/or sulfonylureas. Abrupt discontinuation can increase the risk for acute coronary syndromes, especially if the patient is already at risk. Make sure that the medication is taken consistently and there aren’t periods of multiple missed doses.

Propranolol comes in multiple dosage forms that have been mixed up. When dispensing or administering take extra caution that the medication is correct.

Propranolol is a weak CYP1A2 inhibitor that could increase concentrations of tizanidine or theophylline. Propranolol also gets broken down by CYP1A2. Medications that inhibit this enzyme can increase the concentration of propranolol. Examples of these are ciprofloxacin and fluvoxamine. Inducers of CYP1A2 can reduce concentrations. These are rifampin, carbamazepine, and phenobarbital. A unique CYP1A2 inducer is smoking tobacco. Medications can cause additive effects when it comes to blood pressure and pulse. Be careful with any blood pressure-lowering medications including antihypertensives, PDE5 inhibitors (sildenafil), and Parkinson’s medications (Sinemet). Drugs that can lower pulse include centrally acting alpha 2 antagonists (clonidine) and acetylcholinesterase inhibitors (donepezil, rivastigmine).

Be sure to check out our free Top 200 study guide – a 31 page PDF that is yours for FREE!

Support The Podcast and Check Out These Amazing Resources!

Flippin’ Pharmacology Flash Cards

Pharmacology Crossword Puzzle Book (Over 2,000 Clues/Questions!)

NAPLEX Study Materials

BCPS Study Materials

BCACP Study Materials

BCGP Study Materials

BCMTMS Study Materials

Meded101 Guide to Nursing Pharmacology (Amazon Highly Rated)

Guide to Drug Food Interactions (Amazon Best Seller)

Drug Interactions In Primary Care (Amazing Resource for Practicing Clinicians)

Perils of Polypharmacy (Great Resource for Those Who Work in Geriatrics)

Quetiapine Pharmacology

On this episode, I discuss quetiapine pharmacology, adverse effects, pharmacokinetics, and drug interactions.

Quetiapine (Seroquel) is a medication seen a fair amount, particularly in the geriatric population where there is psychosis associated with dementia. It is classified as an antipsychotic. Mechanistically it’s going to block dopamine receptors, specifically D2. It also has some serotonin receptor blockade antagonism. It does have other activity as well from a mechanism of action standpoint. There is alpha-blocking activity potentially as well as an antihistamine/anticholinergic type of activity. Uses of this medication are schizophrenia, bipolar disorder with associated mania, miscellaneous psychotic disorders, and Parkinson’s type disease with psychosis. Off-label you may see it used for OCD, or augmentation for PTSD and depression.

There is a boxed warning of increased risk of mortality in elderly/dementia patients. As a class, antipsychotics have extrapyramidal symptoms, metabolic syndrome, anticholinergic activity, QTC prolongation, sexual dysfunction, hyperprolactinemia, neuroleptic malignant syndrome, sedation, fall risk, and potentially a drop in blood pressure as well. With quetiapine, it is important to recognize that antipsychotics can have varying degrees of how much these adverse effects happen and a lot of them are dose-dependent.

There are three important points in comparison to other antipsychotics. Quetiapine is not that great as far as metabolic syndrome risk goes. It’s in the middle of the other antipsychotics. Its extrapyramidal symptoms are better than most, which is why it’s used so often in Parkinson’s. Quetiapine tends to be more sedating than other antipsychotics. This can be helpful when patients are having psychosis worse in the evening or at night.

Metabolic syndrome is something to worry about more in younger patients. The long-term risk of diabetes and hyperlipidemia is going to be a lot higher for them than an 80-year-old using a low dose for dementia-related aggression.

3A4 is a pathway of breakdown for quetiapine drug interactions. With larger food intakes absorption can increase about 15% to 25% and that’s in the area under the curve. This is not something to be very concerned about unless patients change the way they take it. 

Quetiapine’s drug interactions are mostly additive effects. Watch out for other sedative drugs such as alcohol, opioids, and benzodiazepines. The same goes for drugs causing QT prolongation. Quetiapine has alpha-blocking activity and an added effect on patients with borderline low blood pressure or at risk for falls. It also mechanistically has a potential antihistamine burden that can play a role in adding on to anticholinergic effects. Then lastly it is metabolized partly by CYP3A4 so there is some potential there for drug interactions. Classic enzyme inducers are St. John’s Wort and carbamazepine which would lower the concentration of quetiapine.

Eric Christianson, PharmD, BCPS, BCGP

Information for the podcast is obtained from various sources including the Highly Rated Flippin’ Pharmacology Flashcards which you can find on Amazon by clicking here!

Phenazopyridine Pharmacology

On this episode, I discuss phenazopyridine pharmacology, adverse effects, and potential drug interactions.

Be sure to check out our free Top 200 study guide – a 31 page PDF that is yours for FREE!

Support The Podcast and Check Out These Amazing Resources!

Flippin’ Pharmacology Flash Cards

Pharmacology Crossword Puzzle Book (Over 2,000 Clues/Questions!)

NAPLEX Study Materials

BCPS Study Materials

BCACP Study Materials

BCGP Study Materials

BCMTMS Study Materials

Meded101 Guide to Nursing Pharmacology (Amazon Highly Rated)

Guide to Drug Food Interactions (Amazon Best Seller)

Drug Interactions In Primary Care (Amazing Resource for Practicing Clinicians)

Perils of Polypharmacy (Great Resource for Those Who Work in Geriatrics)

Fluvoxamine Pharmacology

On this episode, I discuss fluvoxamine pharmacology, adverse effects, and most importantly, drug interactions.

Be sure to check out our free Top 200 study guide – a 31 page PDF that is yours for FREE!

Support The Podcast and Check Out These Amazing Resources!

Flippin’ Pharmacology Flash Cards

Pharmacology Crossword Puzzle Book (Over 2,000 Clues/Questions!)

NAPLEX Study Materials

BCPS Study Materials

BCACP Study Materials

BCGP Study Materials

BCMTMS Study Materials

Meded101 Guide to Nursing Pharmacology (Amazon Highly Rated)

Guide to Drug Food Interactions (Amazon Best Seller)

Drug Interactions In Primary Care (Amazing Resource for Practicing Clinicians)

Perils of Polypharmacy (Great Resource for Those Who Work in Geriatrics)

Oxybutynin Pharmacology

On this episode, I discuss oxybutynin pharmacology, drug interactions, and adverse effects.

Be sure to check out our free Top 200 study guide – a 31 page PDF that is yours for FREE!

Support The Podcast and Check Out These Amazing Resources!

Flippin’ Pharmacology Flash Cards

Pharmacology Crossword Puzzle Book (Over 2,000 Clues/Questions!)

NAPLEX Study Materials

BCPS Study Materials

BCACP Study Materials

BCGP Study Materials

BCMTMS Study Materials

Meded101 Guide to Nursing Pharmacology (Amazon Highly Rated)

Guide to Drug Food Interactions (Amazon Best Seller)

Drug Interactions In Primary Care (Amazing Resource for Practicing Clinicians)

Perils of Polypharmacy (Great Resource for Those Who Work in Geriatrics)

Glyburide Pharmacology

On this episode, I will discuss glyburide pharmacology.

Be sure to check out our free Top 200 study guide – a 31 page PDF that is yours for FREE!

Support The Podcast and Check Out These Amazing Resources!

Flippin’ Pharmacology Flash Cards

Pharmacology Crossword Puzzle Book (Over 2,000 Clues/Questions!)

NAPLEX Study Materials

BCPS Study Materials

BCACP Study Materials

BCGP Study Materials

BCMTMS Study Materials

Meded101 Guide to Nursing Pharmacology (Amazon Highly Rated)

Guide to Drug Food Interactions (Amazon Best Seller)

Drug Interactions In Primary Care (Amazing Resource for Practicing Clinicians)

Perils of Polypharmacy (Great Resource for Those Who Work in Geriatrics)

Zaleplon Pharmacology

On this episode, I discuss the pharmacology of zaleplon including side effects, drug interactions, and important clinical pearls.

Zaleplon is a non-benzodiazepine sleep aide commonly known as Sonata. It is commonly used for sedation and the management of insomnia. Zaleplon is a controlled medication, with a high risk for dependence, and because of that, it is best used to treat short-term insomnia. The pharmacology of zaleplon is similar to other sleep aids like Ambien, and Lunesta; they all have an impact on GABA. Specifically, zaleplon regulates the GABABZ receptor. The GABABZ receptor has been shown to be responsible for the pharmacological properties of benzodiazepines which produce sedative, anxiolytic, relaxant, and anticonvulsive effects. For pharmacokinetics, zaleplon has a general onset of action around 30-60 minutes, because of that it is best dosed closer to bedtime. 

For sedatives, and other drugs similar to zaleplon, it is generally better to start at lower doses in geriatrics and smaller patients. The commonly accepted dosing is between 5-20 mg, but it is best to use non-pharmacological therapies, instead of pharmacological whenever possible. The most common side effect that may be experienced with zaleplon is next-day sedation, also known as hangover sedation. Loss of mental clarity, dizziness, and confusion may also be present. Serious side effects of taking zaleplon are abnormal sleep behaviors, which it carries a US boxed warning for, and risk of dependence. Zaleplon is also on Beer’s list because of the increased risk of falls, delirium, and increased complications while driving due to sedation and lethargy. 

When a sedative is first prescribed, it’s important to first look at the other medications a patient may be taking to see if that’s what may be causing insomnia. For example, a diuretic administered at night can cause excessive urination that can lead to insomnia. The addition of stimulants too late in the day can also cause that, and similarly, lifestyle changes like increased intake of caffeine can increase the risk for insomnia as well. 

Most of the drug-drug interactions that zaleplon has are due to additive depressive effects. Examples include alcohol, opioids, older antihistamines, trazodone, or any medication that can cause sedation. There is also a smaller risk for CYP3A4 interaction. Concurrent administration of an inducer, like St. John’s Wort, or carbamazepine, can lower the concentrations of zaleplon. Likewise, inhibitors may increase concentrations.

In cases of overdose, the signs and symptoms that will most likely precipitate are exaggerations of zaleplon’s adverse effects. The manifestations of CNS depression can range from drowsiness to coma. More mild cases might have drowsiness, confusion, and lethargy; while more serious cases may have ataxia, hypotonia, hypotension, respiratory depression, coma, and death. To treat a zaleplon overdose, symptomatic and supportive measures are necessary along with gastric lavage. Animal studies suggest that flumazenil is an antidote as an antagonist to zaleplon, but there is no human data. With proper treatment, recoveries have been made with overdoses greater than 200 mg. In instances where the outcome was fatal, it was most often associated with the use of additional CNS depressants.

Show notes provided by Chong Yol G Kim, PharmD Student.

Be sure to check out our free Top 200 study guide – a 31 page PDF that is yours for FREE!

Support The Podcast and Check Out These Amazing Resources!

Flippin’ Pharmacology Flash Cards

Pharmacology Crossword Puzzle Book (Over 2,000 Clues/Questions!)

NAPLEX Study Materials

BCPS Study Materials

BCACP Study Materials

BCGP Study Materials

BCMTMS Study Materials

Meded101 Guide to Nursing Pharmacology (Amazon Highly Rated)

Guide to Drug Food Interactions (Amazon Best Seller)

Drug Interactions In Primary Care (Amazing Resource for Practicing Clinicians)

Perils of Polypharmacy (Great Resource for Those Who Work in Geriatrics)

Resources

Paragraph 1: taken from podcast, also taken from https://go.drugbank.com/drugs/DB00962#pharmacodynamics

Paragraph 2: taken from podcast

Paragraph 3: taken from podcast

Paragraph 4: taken from podcast

Paragraph 5: taken from FDA label

Hydrochlorothiazide Pharmacology

On this episode, I breakdown the pharmacology of hydrochlorothiazide including adverse effects, drug interactions, and other clinical pearls.

Hydrochlorothiazide has common brand names of Microzide, Hydrodiuril, and its common abbreviation is HCTZ. Extra caution should be taken with “HCTZ”; it may be mistaken for other abbreviations. Hydrochlorothiazide works pharmacologically by blocking the reabsorption of sodium in the distal tubule of the kidney. The result of the pharmacology of hydrochlorothiazide is increased water, sodium, and potassium excretion. Due to hydrochlorothiazide’s mechanism of action, it makes it advantageous when used for blood pressure, edema, and heart failure in addition to loop diuretics.

Hydrochlorothiazide’s adverse reactions are due to its pharmacology. Frequent urination should occur so, dosing hydrochlorothiazide at night should be avoided. Loss of electrolytes should also happen, and the risk for hypokalemia, hyponatremia, and hypomagnesemia increases. Other adverse reactions include the increased risk of dehydration, increased uric acid concentrations, and hypercalcemia. The risk for hypercalcemia is not as concerning in lower doses. There is a potential for a sulfonamide allergy. If the patient has had an anaphylactic reaction with a sulfonamide-containing medication, hydrochlorothiazide may want to be avoided, or at least a risk/benefit assessment should be done. Another potential adverse reaction is an increase in blood sugar, but that is not typically concerning at lower doses. Electrolytes, as well as creatinine clearance, should be monitored to make sure kidney function, and electrolyte levels remain stable. 

Drug-drug interactions that can occur with hydrochlorothiazide are additive effects that may happen when taken with other medications. The risk for an unsafe drop in blood pressure may increase if it is taken with PDE inhibitors, Sinemet, or SGLT2 inhibitors. Hydrochlorothiazide should be avoided with Lithium, the risk for toxicity increases when the two are taken concurrently due to Lithium concentrations being increased. The risk of an AKI increases if it’s taken with NSAIDs, ACE inhibitors, or ARBs; increased monitoring is warranted. Topiramate may increase the risk for hypokalemia, while vitamin D and calcium supplements may increase the risk for hypercalcemia. Hyponatremia may be more likely to occur if it’s taken with SSRIs, carbamazepine, or oxcarbazepine. Hydrochlorothiazide may blunt the effect of allopurinol if it’s used for gout. Since blood sugar levels may be increased, hyperglycemia can occur, but it’s typically not clinically significant. 

In cases of intolerability, or overdoses, the manifestations are extensions of hydrochlorothiazide’s adverse effect profile. Most commonly, electrolyte depletion and dehydration will occur.

Show notes provided by Chong Yol G Kim, PharmD Student.

Be sure to check out our free Top 200 study guide – a 31 page PDF that is yours for FREE!

Support The Podcast and Check Out These Amazing Resources!

Flippin’ Pharmacology Flash Cards

Pharmacology Crossword Puzzle Book (Over 2,000 Clues/Questions!)

NAPLEX Study Materials

BCPS Study Materials

BCACP Study Materials

BCGP Study Materials

BCMTMS Study Materials

Meded101 Guide to Nursing Pharmacology (Amazon Highly Rated)

Guide to Drug Food Interactions (Amazon Best Seller)

Drug Interactions In Primary Care (Amazing Resource for Practicing Clinicians)

Perils of Polypharmacy (Great Resource for Those Who Work in Geriatrics)